New Search

Export article

Impact of the Microwave Coupling Structure on an Electron-Cyclotron Resonance Thruster

Simon Peterschmitt, Denis Packan

Abstract: The electron-cyclotron resonance thruster with magnetic nozzle relies on two successive energy transfer processes: first from electromagnetic energy to electron thermal energy, facilitated by a coupling structure; and second from electron thermal energy to ion directed kinetic energy, facilitated by a diverging magnetic field. The nature and geometry of the coupling structure are crucial to the first energy transfer process. This paper presents an experimental study of the performance of an electron-cyclotron resonance thruster with magnetic nozzle, equipped either with a waveguide-coupling structure or with a coaxial-coupling structure. The necessity of thrust balance measurements to perform such a comparison is demonstrated. The low coupling efficiency from microwave power to the plasma achieved by waveguide coupling is found to result in very large uncertainty with respect to the deposited power. A method to significantly reduce this uncertainty is proposed and implemented. Thrust balance measurements indicate 500 μN for the coaxial-coupled thruster and 240 μN for the waveguide-coupled thruster, both operated at 25 W of deposited microwave power and a mass flow rate of 98 μg/s of xenon. Electrostatic probe measurements reveal that this difference can be explained by a difference in ion energy. The results emphasize the critical role of the coupling structure, which may have been previously overlooked.
Keywords: thruster / coupling structure / energy to ion / microwave / resonance / cyclotron / magnetic / waveguide

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Journal of Propulsion and Power" .
References (9)
    Back to Top Top