SCARA ROBOT LINKS LENGTH OPTIMIZATION BY USING MATLAB AND VERIFICATION WITH SIMMECHANICS AND SOLIDWORKS

Abstract
This paper aims for optimizing links length that consumed the minimum energy, for a customized Selective Compliant Assembly Robot Arm (SCARA) robot. Nine link length combinations are tested and simulated. This research is a part of a project of designing a robotic arm for a packing task. Kinematic and dynamic studies are performed for a 2R robotic arm. The results of kinematic study which are angular displacement, angular velocity and angular acceleration for each joint are determined and exported to the dynamic study to obtain the torque and power consumed. The dynamic study is performed with the aid of MATLAB code, MATLAB/SimMechanics and Solidworks are used to simulate and analyze the dynamic of the robotic arm. The energy consumed for each link length combination using the three methods is calculated.