Probing the Structure of Melts, Glasses, and Amorphous Materials

Abstract
Liquids, glasses, and amorphous materials are ubiquitous in the Earth sciences and are intrinsic to a plethora of geological processes, ranging from volcanic activity, deep Earth melting events, metasomatic processes, frictional melting (pseudotachylites), lighting strikes (fulgurites), impact melting (tektites), hydrothermal activity, aqueous solution geochemistry, and the formation of dense high-pressure structures. However, liquids and glassy materials lack the long-range order that characterizes crystalline materials, and studies of their structure require a different approach to that of conventional crystallography. The pair distribution function is the neutron diffraction technique used to characterize liquid and amorphous states. When combined with atomistic models, neutron diffraction techniques can determine the properties and behavior of disordered structures.