Predictive Speed-Control Algorithm Based on a Novel Extended-State Observer for PMSM Drives

Abstract
To enhance the control performance of permanent-magnet synchronous motor (PMSM) drive systems, achieving high-precision motion control, a generalized predictive control (GPC) method based on a novel extended-state observer (ESO) is investigated for the speed control of PMSM. In this paper, the controller design consists of two steps. Firstly, according to the continuous time model of PMSM, using the Taylor series expansion, the predictive value of motor speed in finite time is derived, and the single-loop speed controller by combining the speed loop and q - axis current loop is obtained through the defined cost function. The structure of the controller is simple compared to other forms. Secondly, considering the uncertainty of the load torque and the model uncertainties, a novel extended-state observer is designed to compute the actual torque, and the observed value is introduced to the GPC controller. The simulation and experimental results show that the proposed GPC+ESO control method has superior dynamic performance and strong robustness.
Funding Information
  • National Natural Science Foundation of China (61703222)
  • China Postdoctoral Science Foundation (2018M632622)