Identifying Mitochondrial Transcription Factor A As a Potential Biomarker for the Carcinogenesis and Prognosis of Prostate Cancer

Abstract
Aims: Mitochondrial functional transformation contributes to the carcinogenesis of the prostate by meeting the metabolic needs of cancer cells. Mitochondrial transcription factor A (TFAM) is a pivotal regulator that maintains homeostasis of mitochondrial function. However, its role in prostate carcinogenesis has not been well elucidated. Materials and Methods: In the present study, we analyzed the expression of TFAM in normal prostate tissue and prostate cancer using public databases; a prostate-tissue chip was used to verify the results. The expression of TFAM in normal cells and in prostate cancer cells was determined by western blotting analysis. We knocked down TFAM in the prostate cancer cell line PC3 using a specific shRNA to explore the potential effects of TFAM in prostatic carcinogenesis. Results: We observed higher expression levels of TFAM in prostate cancer tissue than in normal prostate tissue and tumor adjacent normal tissues. A receiver operating characteristic curve was drawn that demonstrated the diagnostic efficacy of using TFAM expression for prostate cancer prognoses. Elevated levels of TFAM may indicate poorer overall survival in prostate cancer patients. Western blotting assays also showed that relative to the normal prostatic epithelial cell line RWPE-1, prostate cancer cell lines PC3 and DU145 expressed more TFAM protein. Furthermore, knockdown of TFAM inhibited the colony-formation capability of PC3 cells. Conclusion: Collectively, these results suggest that TFAM promotes carcinogenesis of the prostate, and may constitute a marker to be used in the diagnosis and prognosis of prostate cancer.