Backstepping Based Nonlinear Sensorless Control of Induction Motor System

Abstract
This work proposes a sensorless control strategy for the induction motor (IM) using a Backstepping control and a nonlinear observer based on the circle-criterion approach. The Backstepping is a powerful control strategy that deals with nonlinear higher-order systems and includes non-measurable parameters related to the (IM). The nonlinear observer approach is intended to determine these important parameters. The circle-criterion approach is employed to determine the observer gain matrices as a solution of LMI (linear matrix inequalities) that guarantee the stability conditions of the designed observer. The main objective of this method is to solve the problem of the nonlinearities of the system which ensure the global asymptotic convergence of the observed dynamics and to improve the performance of the induction motors. The efficiency and correctness of the proposed scheme are proven by several numerical simulations.
Funding Information
  • Directorate General of Scientific Research and Technological Development (DGRSDT) of Algeria