High Temperature Flexural Deformation Properties of Engineered Cementitious Composites (ECC) with Hybrid Fiber Reinforcement

Abstract
Engineered Cementitious Composites (ECC) is a class of high-performance fiber reinforced composites with ultra-ductility designed based on micromechanics, and it has been developed for increasing application in the construction industry during recent decades. The properties of ECC at room temperature have been tested and studied in depth, however, few studies focus on its performance after high temperature that is one of the worst conditions to ECC. To investigate the change tendency and mechanism for the high temperature flexural properties of hybrid fiber reinforced ECC and the feasibility of calcium carbonate whisker to reduce the cost of ECC materials, polyvinyl alcohol fiber (PVA) reinforced strain hardening cementitious composites (PVA-ECC), steel fiber + PVA fiber reinforced ECC (defined as HyFRECC-A) and steel fiber + PVA fiber + CaCO3 whisker reinforced ECC (defined as HyFRECC-B) subject to room temperature and 200 ℃, 400 ℃, 600 ℃, 800 ℃ elevated temperature exposure were experimentally compared. The results indicate that equally replacing PVA fibers by steel fibers degraded the flexural hardening ability of PVA-ECC at room temperature, while the addition of appropriate amount of CaCO3 whisker improved the flexural strength, toughness and flexural hardening behavior. The elevated temperature posed a significant effect on the flexural strength and toughness of the three types of ECCs. Flexural deflection hardening behavior of the three types of ECCs was eliminated after high temperature exposure. Flexural strength and toughness of PVA-ECC presented an exponential decay along with the increase of temperature. The addition of steel fiber slowed down the decay rate. Although the use of CaCO3 whisker increased the post-temperature flexural strength and toughness of HyFRECC-B, the decay rate was not further decreased.