Volume Subtraction Method Using Dual Reconstruction and Additive Technique for Pulmonary Artery/Vein 3DCT Angiography

Abstract
This study aimed to develop a method for pulmonary artery and vein (PA/PV) separation in three-dimensional computed tomography (3DCT), using a dual reconstruction technique and the addition of CT images. The physical image properties of multiple reconstruction kernels (FC13; FC13 3D-Q03; FC30 3D-Q03; FC83; FC13 twofold addition; FC13 threefold addition; FC13 fourfold addition; FC13 [3D-Q03] twofold addition; FC13+FC30 (3D-Q03); FC13+FC83) were evaluated based on spatial resolution using a modulation transfer function. The lung kernel CT image (FC 83) had a high spatial resolution with a 10% modulation transfer function (0.847). The noise power spectrum of the additive CT images was measured, and the CT values for the PA/PV with and without addition were compared. The addition of CT images increased the CT values difference between the PA/PV. The PA/PV 3DCT angiography (PA/PV 3DCTA), even with a small difference in CT values, could be effectively separated using high spatial resolution kernel CT and the addition of CT images dedicated to subtraction. This novel, simple method could create PA/PV 3DCTA using a general CT scanner and 3D workstation that can be easily performed at any facility.