New Search

Export article

Predictive analytics for step-up therapy: Supervised or semi-supervised learning?

, Michael Lau, Guilherme Del Fiol
Published: 17 June 2021

Abstract: Step-up therapy is a patient management approach that aims to balance the efficacy, costs and risks posed by different lines of medications. While the initiation of first line medications is a straightforward decision, stepping-up a patient to the next treatment line is often more challenging and difficult to predict. By identifying patients who are likely to move to the next line of therapy, prediction models could be used to help healthcare organizations with resource planning and chronic disease management. To compared supervised learning versus semi-supervised learning to predict which rheumatoid arthritis patients will move from the first line of therapy (i.e., conventional synthetic disease-modifying antirheumatic drugs) to the next line of therapy (i.e., disease-modifying antirheumatic drugs or targeted synthetic disease-modifying antirheumatic drugs) within one year. Five groups of features were extracted from an administrative claims database: demographics, medications, diagnoses, provider characteristics, and procedures. Then, a variety of supervised and semi-supervised learning methods were implemented to identify the most optimal method of each approach and assess the contribution of each feature group. Finally, error analysis was conducted to understand the behavior of misclassified patients. XGBoost yielded the highest F-measure (42%) among the supervised approaches and one-class support vector machine achieved the highest F-measure (65%) among the semi-supervised approaches. The semi-supervised approach had significantly higher F-measure (65% vs. 42%; p < 0.01), precision (51% vs. 33%; p < 0.01), and recall (89% vs. 59%; p < 0.01) than the supervised approach. Excluding demographic, drug, diagnosis, provider, and procedure features reduced the F-measure from 65% to 61%, 57%, 54%, 51% and 49% respectively (p < 0.01). The error analysis showed that a substantial portion of false positive patients will change their line of therapy shortly after the prediction period. This study showed that supervised learning approaches are not an optimal option for a difficult clinical decision regarding step-up therapy. More specifically, negative class labels in step-up therapy data are not a robust ground truth, because the costs and risks associated with higher line of therapy impact objective decision making of patients and providers. The proposed semi-supervised learning approach can be applied to other step-up therapy applications.
Keywords: Step-up therapy / Semi-supervised learning / Rheumatoid arthritis / Resource planning / Chronic care management

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Journal of Biomedical Informatics" .
References (35)
    Back to Top Top