Effects of pH on Nanofibrillation of TEMPO-Oxidized Paper Mulberry Bast Fibers

Abstract
TEMPO oxidation was conducted as a pretreatment to achieve efficient nanofibrillation of long paper mulberry bast fibers (PMBFs). The pH dependency of nanofibrillation efficiency and the characteristics of the resulting cellulose nanofibrils (CNFs) were investigated. As the pH increased, the negative value of the zeta potential of TEMPO-oxidized fibers increased. The increase in electrostatic repulsion at pH values of greater than 9 prevented the entanglement of long PMBFs, which was a drawback for defibrillation at acidic pH. With increasing pH, the CNF production yield was increased. The crystallinity index of TEMPO-oxidized CNFs from PMBFs was 83.5%, which was higher than that of TEMPO-oxidized CNFs from softwood fibers in the same conditions. The tensile strength of nanopaper from TEMPO-oxidized PMBF CNFs was 110.18 MPa, which was approximately 30% higher than that (84.19 MPa) of the TEMPO-oxidized CNFs from softwood fibers.
Funding Information
  • National Research Foundation of Korea (2018R1A6A1A03025582)