Modeling the Boron-Doping Silicon Beam by a Multilayer Model

Abstract
The boron-doping silicon beam commonly used in microdevices exhibits a nonuniform material property along its thickness or width because of the gradient of boron concentration induced by diffusion process. The constant of rigidity, one of the most important parameters of microbeam, needs to be accurately calculated and designed in the development of high precise sensors and actuators. Current design methods, mainly depending on the analytical solutions derived under the assumption of a uniform material property or some commercial software for a varied property, are not adequate and time consuming to calculate the constant of rigidity of boron-doping silicon beam. A multilayer model is proposed in this paper to replace the continuous solid model by dividing the beam into separated layers glued together. The finite element lamination method is utilized to acquire the equivalent Young modulus and moment of inertia of cross section of multilayer model. The equivalent values are calculated from double-layer structures to multilayer ones based on the small deformation theory and the material mechanics theory. The proposed method provides an effective method to design the stiffness or frequency of microdevice and its results are validated by COMSOL simulation.
Funding Information
  • National Natural Science Foundation of China (51175437, ZYGX2011J085)