2D Numerical Study of Heat Transfer Enhancement Using Fish-Tail Locomotion Vortex Generators

Abstract
In this paper, a numerical simulation is performed to study the effect of two types of concave vortex generators (VGs), arranged as fish-tail locomotion in a rectangular channel. The heat transfer and fluid flow characteristics with and without VGs are examined over the Reynolds number range 200≤Re≤2200.The two proposed types of the VGs are selected based on the speed of the fish movement which is arranged in different distances between them (d/H=0.6, 1, 1.3). The results show that the use of VGs can significantly enhance the heat transfer rate, but also increases the friction factor. The heat transfer performance is enhanced by (4-21.1%) reaching the maximum value by using the first type of the VGs at (d/H=1.3) due to better mixing of secondary flow and the new arrangement of the VGs which lead to decreasing the friction factor with an easy flow of fluid.