Abstract
本文使用第一性原理计算方法研究了极性苯分子4-氰基苯胺和4,5-二氨基邻苯二腈夹钒原子三明治团簇的结构和磁学性质。计算结果表明三明治团簇中极性苯分子以反铁电形式排列,且钒–钒平均间距随着分子层数的增加显著减小。团簇的热力学稳定性随着分子层数的增加逐渐减小,但迅速趋于平稳。极性苯分子构成的团簇呈现半金属或者是金属性质,而它们的磁基态及其稳定性强烈地依赖于分子层数,这与苯分子构成的团簇存在很大的差异。本文的研究结果对于调控有机分子和过渡金属原子复合物的磁电特性具有重要的借鉴作用。 In this paper, the structural and magnetic properties are studied by the first-principle method for the sandwich clusters consisted of polar benzene molecules 4-cyananiline and 4, 5-diamino-phthalonitrile with vanadium. The calculated results show that the polar benzene molecules in the sandwich cluster are arranged in the antiferroelectric form, and the average vanadium-vanadium spacing decreases significantly with the increase of molecular layer number. The thermal stability of the cluster decreases gradually with the increase of molecular layer number, but tends to be stable rapidly. The clusters containing polar molecules exhibit a half-metallic or metallic property, and their magnetic ground states, as well as their stability, are strongly dependent on the number of molecular layers, which is very different from those containing benzene molecule. The results of this study are useful for regulating the magnetoelectric properties of organic molecules and transition metal complexes.