Hydroscaling indirect-drive implosions on the National Ignition Facility

Abstract
A goal of the laser-based National Ignition Facility (NIF) is to increase the liberated fusion energy “yield” in inertial confinement fusion experiments well past the ignition threshold and the input laser energy. One method of increasing the yield, hydrodynamic scaling of current experiments, does not rely on improving compression or implosion velocity, but rather increases the scale of the implosion to increase hotspot areal density and confinement time. Indirect-drive (Hohlraum driven) implosions carried out at two target sizes, 12.5% apart, have validated hydroscaling expectations. Moreover, extending comparisons to the best-performing implosions at five different capsule sizes shows that their performance also agrees well with hydroscaling expectations even though not direct hydroscales of one another. In the future, by switching to a reduced loss Hohlraum geometry, simulations indicate that we can drive 20% larger-scale implosions within the current power and energy limitations on the NIF. At the demonstrated compression and velocity of these smaller-scale implosions, these 1.2× hydroscaled implosions should put us well past the ignition threshold.
Funding Information
  • U.S. Department of Energy (DEAC52-07NA27344)