Wireless real-time capacitance readout based on perturbed nonlinear parity-time symmetry

Abstract
In this article, we report a vector-network-analyzer-free and real-time LC wireless capacitance readout system based on perturbed nonlinear parity-time (PT) symmetry. The system is composed of two inductively coupled reader-sensor parallel RLC resonators with gain and loss, respectively. By searching for the real mode that requires the minimum saturation gain, the steady-state frequency evolution as a function of the sensor capacitance perturbation is analytically deduced. The proposed system can work in different modes by setting different perturbation points. In particular, at the exceptional point of PT symmetry, the system exhibits high sensitivity. Experimental demonstrations revealed the viability of the proposed readout mechanism by measuring the steady-state frequency of the reader resonator in response to the change of trimmer capacitor on the sensor side. Our findings could impact many emerging applications such as implantable medical device for health monitoring, parameter detection in harsh environment, sealed food packages, etc.& nbsp;Published under an exclusive license by AIP Publishing
Funding Information
  • National Natural Science Foundation of China (51977165)

This publication has 33 references indexed in Scilit: