Intelligent Dam Breach Threat Monitoring System

Abstract
The article is devoted to the development of a river flow modeling technique. The paper considers possible approaches to modeling the flow of fluids, as well as an analysis of existing solution methods and the formulation of research problems. The task is analyzed and the main problems that may arise in the course of its solution are identified. A general description of the problem and the formulation of research objectives are given. The advantages and disadvantages of the described methods are highlighted. A comparative analysis of known methods for complex analysis, forecasting the consequences of natural and man-made emergencies using modern technologies of mathematical modeling and a computational experiment with displaying the results in a geographic information system and a study of a mathematical model of a dam breakthrough was carried out. A description of the flood and flood monitoring technology developed in Kazakhstan is given, the results of its practical use in certain regions are discussed, and directions for further development are outlined. Thus, based on the analysis of various existing methods, the goal and main objectives of research aimed at developing a methodology for predicting a hydrodynamic accident as an emergency were formulated. The continuous wave method or ultrasonic pulse echo method is used. Based on microprocessor technology and sensors, an autonomous microcomputer system for transmitting climate data has been developed. A program for monitoring the factors of breakthrough waves in real time has been developed. An autonomous microcomputer system for transmitting climate data has been developed. The autonomous power supply subsystem for satellite data transmission systems includes a set of equipment, the functions of which are to generate and store energy for its subsequent use in order to provide power supply to the equipment. Water level measurement equipment can be different. To ensure the functioning of the system, the measuring equipment will be interfaced with the data transmission subsystem and the power supply subsystem. The pairing of these systems will make it possible to monitor the water level in moraine lakes, the location of which is extremely inaccessible. Technical means measuring the water level must be able to receive data from sensors with different periodicity. The accumulated data is used to predict possible floods and floods, calculate water consumption, and for other purposes. The characteristics of dams and the capabilities of modern control systems based on the use of microprocessor technology are analyzed.