A Motion Planning Method for Automated Vehicles in Dynamic Traffic Scenarios

Abstract
We propose a motion planning method for automated vehicles (AVs) to complete driving tasks in dynamic traffic scenes. The proposed method aims to generate motion trajectories for an AV after obtaining the surrounding dynamic information and making a preliminary driving decision. The method generates a reference line by interpolating the original waypoints and generates optional trajectories with costs in a prediction interval containing three dimensions (lateral distance, time, and velocity) in the Frenet frame, and filters the optimal trajectory by a series of threshold checks. When calculating the feasibility of optional trajectories, the cost of all optional trajectories after removing obstacle interference shows obvious axisymmetric regularity concerning the reference line. Based on this regularity, we apply the constrained Simulated Annealing Algorithm (SAA) to improve the process of searching for the optimal trajectories. Experiments in three different simulated driving scenarios (speed maintaining, lane changing, and car following) show that the proposed method can efficiently generate safe and comfortable motion trajectories for AVs in dynamic environments. Compared with the method of traversing sampling points in discrete space, the improved motion planning method saves 70.23% of the computation time, and overcomes the limitation of the spatial sampling interval.
Funding Information
  • Graduate Innovation Fund of Jilin University (101832020CX149)