Characteristics of Effluent from Formic Acid and Sodium Hydroxide Pulping of Kenaf Stem

Abstract
The pulp and paper industry is considered as one of the major potential sources of pollution in the environment and a consumer of wood. Environmental effects have been attributed to chemicals introduced during the manufacturing process. This paper investigated the influence of cooking chemicals, concentration and time on the properties of effluent generated during pulping of agricultural residue. A stem of kenaf which is an agricultural residue was pulped with 20%, 60% and 90% concentrations of formic acid and sodium hydroxide at 1 hour, 2 hours and 3 hours intervals to determine the characteristics of their effluents. The lowest Chemical Oxygen Demand (COD) obtained from formic acid effluent for the 3 hours cooking at 20%, 60% and 90% concentrations was 324mg/l at 60% concentration after cooking for 2 hours while sodium hydroxide effluent has 3050mg/l at 20% concentration after 1hour cooking as its lowest. Formic acid effluent showed lowest Biological Oxygen Demand (BOD) of 10.63mg/l at 60% concentration after cooking for 2 hours while sodium hydroxide has 13.75mg/l at 90% after 1 hour cooking. The value of Total Solid (TS) from formic acid effluent was lowest (16890mg/l) at 60% concentration after cooking for 2 hours while sodium hydroxide lowest value (15524mg/l) was recorded at 20% after 3 hours cooking. Sodium hydroxide effluent has lowest Total Suspended Solid (TSS) of 3165mg/l while formic acid has 2245mg/l both at 90% concentrations after 2 and 3 hours cooking.