Adsorption of Phosphorus Using Cockle Shell Waste

Abstract
Phosphorus is an essential nutrient for aquatic plants and animals. The acceptable range for phosphorus in water is from 0.01 to 0.03 mg/L. However, excessive phosphorus use can result in biodiversity loss and pollution and endanger aquatic creatures and human health because the pollutants are non-biodegradable and thus accumulate over time. This work investigated the removal of phosphorus from synthetic wastewater containing KH2PO4 via adsorption using calcined cockle shell waste. Phosphorus adsorption by calcined cockle shell waste of less than 75 μm particle size was investigated. Five different adsorbent dosages (0.2, 0.4, 0.6, 0.8, and 1.0 g) mixed with 10 ppm phosphate were adsorbed for 60 min. The presence of calcined cockle shell waste was determined by using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and a DR6000 UV–visible spectrophotometer. In brief, the highest dosage of 1.0 g removed 94.96% phosphorus from the synthetic wastewater, while the longest treatment time resulted in 95.74% phosphorus adsorption. The proposed method is low-cost and convenient.