New Search

Export article
Open Access

Fluid particle interaction in packings of monodisperse angular particles

, C. O'Sullivan
Published: 15 September 2021

Abstract: Understanding fluid flow in granular materials is essential for many engineering applications, including petroleum recovery, groundwater movement and embankment stability. This study investigates the influence of particle angularity on permeability and fluid-particle interaction forces. A random shape generator based on spherical harmonics is used to create irregular-shaped particles with different levels of angularity. Granular packings of uniformly sized (monodisperse) particles are then constructed with the discrete element method (DEM), and pore-scale computational fluid dynamics (CFD) simulations are used to determine the flow fields and the resulted fluid-particle interaction. The more angular particle assemblies thus generated are less permeable, and their fluid-particle interaction forces are higher. However, angularity has limited influence on flow rate distribution and flow tortuosity. The influence of angularity is localized. An increase in angularity generates a larger variance of the pressure distribution on the particle surfaces, thus increasing the pressure component of the fluid-particle interaction force.
Keywords: Angularity / Fluid mechanics / Fluid-particle interaction / Permeability / Porous media

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Powder Technology" .
References (46)
    Back to Top Top