A procedure for in vitro evaluation of the immunosuppressive effect of mouse mesenchymal stem cells on activated T cell proliferation

Abstract
Background: Mesenchymal stem/stromal cells (MSC) represent adult cells with multipotent capacity. Besides their capacity to differentiate into multiple lineages in vitro and in vivo, increasing evidence points towards the immunomodulatory capacity of these cells, as an important feature for their therapeutic power. Although not included in the minimal criteria established by the International Society for Cellular Therapy as a defining MSC attribute, demonstration of the immunomodulatory capacity of MSC can be useful for the characterization of these cells before being considered MSC. Methods: Here we present a simple and reliable protocol by which the immunosuppressive effect of mouse bone marrow-derived MSC can be evaluated in vitro. It is based on the measuring of the proliferation of activated T cells cultured in direct contact with irradiated MSC. Results: Our results showed that mouse MSC have a dose-dependent inhibitory effect on activated T cell proliferation, which can be quantified as a percentage of maximum proliferation. Our data shows that batch-to-batch variability can be determined within one or multiple experiments, by extracting the area under curve of T cell proliferation plotted against the absolute number of MSC in co-culture. Conclusions: The validation of the immunosupressive capacity of MSC could be added to the characterization of the cells before being used in various MSC-based approaches to treat immunological diseases. Our results showed that mouse MSC have a dose-dependent inhibitory effect on activated T cell proliferation. The immunosuppressive properties of MSC vary between batches, but not between different passages of the same batch.
Funding Information
  • Consiliul National al Cercetarii Stiintifice (POC-A.1-A.1.1.4-E-2015, ID: P 37 668, PN-III-P1-1.1-PD-2016-1903)
  • Consiliului National al Cercetarii Stiintifice din Invatamantul Superior (PN-III-P4-ID-PCE-2020-1340)