New Search

Export article
Open Access

Semiconductor Fluorinated Carbon Nanotube as a Low Voltage Current Amplifier Acoustic Device

D. Sakyi-Arthur, S. Y. Mensah, K. W. Adu, K. A. Dompreh, R. Edziah, N. Mensah, C. Jebuni-Adanu
World Journal of Condensed Matter Physics , Volume 10, pp 12-25; doi:10.4236/wjcmp.2020.101002

Abstract: Acoustoelectric effect (AE) in a non-degenerate fluorinated single walled carbon nanotube (FSWCNT) semiconductor was carried out using a tractable analytical approach in the hypersound regime , where q is the acoustic wavenumber and is the electron mean-free path. In the presence of an external electric field, a strong nonlinear dependence of the normalized AE current density , on ( is the electron drift velocity and is the speed of sound in the medium) was observed and depends on the acoustic wave frequency, , wavenumber q, temperature T and the electron-phonon interactions parameter, . When , decreases to a resonance minimum and increases again, where the FSWCNT is said to be amplifying the current. Conversely, when , rises to a maximum and starts to decrease, similar to the observed behaviour in negative differential conductivity which is a consequence of Bragg’s reflection at the band edges at T=300K. However, FSWCNT will offer the potential for room temperature application as an acoustic switch or transistor and also as a material for ultrasound current source density imaging (UCSDI) and AE hydrophone devices in biomedical engineering. Moreover, our results prove the feasibility of implementing chip-scale non-reciprocal acoustic devices in an FSWCNT platform through acoustoelectric amplification.
Keywords: Carbon Nanotube / Fluorinated / Acoustoelectric Effect / Low Voltage / Acoustic Device

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "World Journal of Condensed Matter Physics" .
References (1)
    Cited by 1 articles
      Back to Top Top