Social Behavior, Ovary Size, and Population of Origin Influence Cuticular Hydrocarbons in the Orchid Bee Euglossa dilemma

Abstract
Cuticular hydrocarbons (CHCs) are waxy compounds on the surface of insects that prevent desiccation and frequently serve as chemical signals mediating social and mating behaviors. Although their function in eusocial species has been heavily investigated, little is known about the evolution of CHC-based communication in species with simpler forms of social organization lacking specialized castes. Here we investigate factors shaping CHC variation in the orchid bee Euglossa dilemma, which forms casteless social groups of two to three individuals. We first assess geographic variation, examining CHC profiles of males and females from three populations. We also consider CHC variation in the sister species, Euglossa viridissima, which occurs sympatrically with one population of E. dilemma. Next, we consider variation associated with female behavioral phases, to test the hypothesis that CHCs reflect ovary size and social dominance. We uncover a striking CHC polymorphism in E. dilemma spanning populations. In addition, we identify a separate set of CHCs that correlate with ovary size, social dominance, and expression of genes associated with social behavior, suggesting that CHCs convey reproductive and social information in E. dilemma. Together, our results reveal complex patterns of variation in which a subset of CHCs reflect the social and reproductive status of nestmates.