Surface Modification of Polypropylene by Atmospheric Pressure Plasma

Abstract
In this investigation, we studied the influence of atmospheric pressure plasma treatment on the surface properties of polypropylene (PP). The PP samples were treated for various durations using a gliding arc plasma source with air as a working gas. The formation of polar groups (–OH and C = O) on the PP surface after plasma treatment was evaluated and analyzed using Raman spectroscopy and attenuated total reflection–Fourier transform infrared spectroscopy. The contact angle was measured using polar and non-polar liquids to obtain the polar and dispersive components as well as the surface free energy of the PP before and after treatment. A sevenfold increase after treatment was observed for the polar component, while hydrophobicity decreased 73% after treatment. Finally, changes in topography were observed using atomic force microscopy (AFM) analysis before and after plasma treatment. AFM images showed that under atmospheric treatment, the PP surface underwent etching, reducing the surface roughness. Microhardness measurements of the films also revealed significant changes in mechanical properties after plasma treatment.
Funding Information
  • Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (IN-105519)
  • Consejo Nacional de Ciencia y Tecnología (225991, 268644)