Analysis of food chain mathematical model under fractal fractional Caputo derivative

Abstract
In this article, the dynamical behavior of a complex food chain model under a fractal fractional Caputo (FFC) derivative is investigated. The dynamical population of the proposed model is categorized as prey populations, intermediate predators, and top predators. The top predators are subdivided into mature predators and immature predators. Using fixed point theory, we calculate the existence, uniqueness, and stability of the solution. We examined the possibility of obtaining new dynamical results with fractal-fractional derivatives in the Caputo sense and present the results for several non-integer orders. The fractional Adams-Bashforth iterative technique is used for an approximate solution of the proposed model. It is observed that the effects of the applied scheme are more valuable and can be implemented to study the dynamical behavior of many nonlinear mathematical models with a variety of fractional orders and fractal dimensions.