Spin thermoelectric effects on aluminum or phosphorus doped zigzag silicene nanoribbons

Abstract
Based on the density-functional theory (DFT) combined with nonequilibrium Green’s function (NGF), this paper investigates the effects of either single aluminum (Al) or single phosphorus (P) atom substitutions at different edge positions of zigzag-edged silicene nanoribbons (ZGNRs) in the ferromagnetic state on the spin-dependent transport properties and spin thermoelectric effects. It has been found that the spin polarization at the Fermi level can reach 100% or –100% in the doped ZSiNRs. Meanwhile, the spin-up Seebeck effect (for -100% case) and spin-down Seebeck effect (for 100% case) are also enhanced. Moreover, the spin Seebeck coefficient is much larger than the corresponding charge Seebeck coefficient at a special doping position and electron energy. Therefore, the study shows that the Al or P doped ZSiNRs can be used to prepare the ideal thermospin devices.