Use of new bacterial strain in solidification and stabilisation of municipal solid waste incineration fly ash

Abstract
The use of microbially induced carbonate precipitation (MICP) is known to be effective in the solidification and stabilization of fly ash that results as a by-product of municipal solid waste incineration (MSWI). In the search for more adaptable and applicable bacteria for MICP fly ash treatment, five species of bacteria were isolated from the nursery soil. The biochemical characteristics of the five bacteria were tested to assess their adaptation to the environment of fly ash. The geotechnical properties and heavy metal leaching concentrations of the fly ash treated by the five bacteria were also tested to evaluate solidification and stabilization effects. Results were compared with the commonly used bacteria Bacillus pasteuril. The Ensifer adhaerens strain outperformed other strains, including B.pasteuril, in environmental adaptation, particle solidification and in the heavy metal stabilization of fly ash. Further MICP treatment tests under different bacterial concentrations, curing conditions and fly ash void ratios were carried out on this strain to investigate the influence of various factors on MICP efficiency. Both the MICP and the pozzolanic solidifying properties played important roles in the solidification and stabilization mechanisms, where the best solidification effect occurred at bacterial concentration of 14.92×107 cells/mL and fly ash void ratio of 0.724.