
A limit theorem for persistence diagrams of random filtered complexes built over marked point processes
Abstract: Random filtered complexes built over marked point processes on Euclidean spaces are considered. Examples of these filtered complexes include a filtration of $\check{\text{C}}$ech complexes of a family of sets with various sizes, growths, and shapes. The law of large numbers for persistence diagrams is established as the size of the convex window observing a marked point process tends to infinity.
Keywords: Marked point process / persistence diagram / persistent Betti number / random topology
Scifeed alert for new publications
Never miss any articles matching your research from any publisher- Get alerts for new papers matching your research
- Find out the new papers from selected authors
- Updated daily for 49'000+ journals and 6000+ publishers
- Define your Scifeed now
Click here to see the statistics on "Modern Stochastics: Theory and Applications" .