Abstract
The inventory of spent nuclear fuel (SNF) generated in nuclear power plants is continuously increasing, and it is very important to maintain the structural integrity of SNF for economical and efficient management. The cladding surrounding nuclear fuel must be protected from physical and mechanical deterioration, which causes fuel rod breakage. In this study, the material properties of the simplified beam model of a SNF rod were calibrated for a drop accident evaluation by considering the pellet–clad interaction (PCI) of the high burnup fuel rod. In a horizontal drop, which is the most damaging during a drop accident of SNF, the stress in the cladding caused by the inertia action of the pellets has a great effect on the integrity of the fuel rod. The failure criterion for SNF was selected as the membrane plus bending stress through stress linearization in the cross-sections through the thickness of the cladding. Because the stress concentration in the cladding around the vicinity of the pellet–pellet interface cannot be simulated in a simplified beam model, a stress correction factor is derived through a comparison of the simplified model and detailed model. The applicability of the developed simplified model is checked through dynamic impact simulations. The developed model can be used in cask level analyses and is expected to be usefully utilized to evaluate the structural integrity of SNF under transport and in storage conditions.
Funding Information
  • Nuclear Safety and Security Commission (2106042)