The effects of metals and mixture exposure on lung function and the potential mediating effects of oxidative stress

Abstract
Exposure to metals is associated with lung function decline. However, limited data are available about effects of co-exposure of metals on lung function. Additionally, the mechanism of the association between metals and lung function remains unclear. We conducted a longitudinal panel study in 2017–2018 among 45 healthy college students. Urinary 15 metals, lung function, biomarkers of oxidative stress and inflammation of participants were measured. Linear mixed effect (LME) and Bayesian kernel machine regression (BKMR) models were applied to explore the associations of urinary metals and mixture with lung function. Furthermore, we analyzed the mediating effect of biomarkers in the association between urinary metals and lung function. LME models showed the negative associations of aluminum (Al), vanadium (V), manganese (Mn), cobalt (Co), nickel (Ni), cadmium (Cd) or antimony (Sb) with Forced vital capacity (FVC), and V, Co, Ni, and Sb with Forced expiratory volume in one second (FEV1). BKMR models indicated the overall effect of metals mixture was negatively associated with FEV1 and FVC; urinary Sb was identified as the major contributor to decreased FVC and FEV1. Urinary 8-hydroxydeoxyguanosine mediated the association of Al, Mn, or Sb with FVC and the relationship of V with FEV1. The results revealed the longitudinal dose–response relationships of urinary metals with pulmonary function among healthy adults. Oxidative stress may be the underlying mechanisms of metals exposure associated with decreased lung function. Due to the small sample size, the interpretation of the results of this study should be cautious, and more studies are needed to verify the findings of this study. Graphical abstract
Funding Information
  • National Natural Science Foundation of China (No. 82073608)
  • Natural Science Foundation of Hebei Province (No. H2021209054)

This publication has 45 references indexed in Scilit: