Abstract
X-ray diffraction (XRD) is a fingerprint technique for the analysis of atomic and molecular structures of crystalline materials, from polymers and plastics, through to structural composites and biomaterials. These all have crystallographic phases in the nanostructure, which greatly influence the macro properties of the material—from insulin and hemoglobin to semiconductors and solar cells. Here, we look at how XRD analysis using a small- and wide-angle X-ray scattering (SAXS/WAXS) system under full vacuum brings the possibility of crystallographic sample characterization, with temperature and environmental control, direct to the laboratory, and how this improves the workflow for phase identification.

This publication has 3 references indexed in Scilit: