New Search

Export article

Monte Carlo Optimization of a Combined Image Quality Assessment for Compressed Images Evaluation

, Mustapha Khelifi, Mohammed Beladgham, Fatima-Zohra Hamlili
Traitement du Signal , Volume 38, pp 281-289; doi:10.18280/ts.380204

Abstract: In image processing, using compression is very important in various applications, especially those using data quantities in transmission and storing. This importance becomes most required with the evolution of image quantities and the big data systems explosion. The image compression allows reducing the required binary volume of image data by encoding the image for transmission goal or database saving. The principal problem with image compression when reducing its size is the degradation that enters the image. This degradation can affect the quality of use of the compressed image. To evaluate and qualify this quality, we investigate the use of textural combined image quality metrics (TCQ) based on the fusion of full reference structural, textural, and edge evaluation metrics. To optimize this metric, we use the Monte Carlo optimization method. This approach allows us to qualify our compressed images and propose the best metric that evaluates compressed images according to several textural quality aspects.
Keywords: optimize / evolution / compressed images / Combined Image Quality / Monte / Carlo / structural

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Traitement du Signal" .
Back to Top Top