Emulsion Graft Polymerization of Methyl Methacrylate onto Cellulose Nanofibers

Abstract
Methyl methacrylate (MMA) was successfully grafted onto cellulose nanofibers (CNFs) at room temperature in an emulsion system using a diethyl(1,10-phenanthroline N1,N10)zinc(II) complex (Phen-DEZ) with oxygen as the radical initiator. The effects of reaction temperature, initiator concentration, and monomer content on the grafting reaction were investigated. The molecular weight of the non-grafted PMMA, which was produced during graft polymerization, was more than 1 million, as determined by size exclusion chromatography. The PMMA-grafted CNFs were analyzed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy, which confirmed the grafting of PMMA on the nanofiber surface. The study presents a strategy for the grafting of high-molecular weight PMMA onto CNFs in an emulsion system using Phen-DEZ and O2.