A B-Spline approach on Dynamic response of bridges subjected to moving vehicles

Abstract
Dynamic analysis of various structures subjected to moving vehicles using the Euler-Bernoulli formulation is presented in this paper. The method employs a new numerical approach in which the B-Spline basis functions are suggested for the computational implementation. The Dalambert`s principle is used to set up the moving differential equation system acting on vehicle and beam solving by the Newmark's modified average acceleration. The rotation-free technique has been taken account into the general formulation on Euler Euler-Bernoulli beam theory by using only one vertical deflection unknown and ignoring the rotational variable considering for each control point. The validations of the proposed method considered by a complicated moving vehicle are compared to the precisely analytical results. With the most existing methods of finite element method (FEM) and readily exact solutions, the present technique indicated that it could be an effective method in suitably simulating the interaction of the bridge structures and complicated vehicles. Through the obtained numerical results, this study gives recommendations and proper measures to minimize the impact of vehicle on long span structures and significantly reduce the computational time and cost when analyzing and assess to these practical structures.
Funding Information
  • National Foundation for Science and Technology Development (107.02-2018.28)