Atomic Pyridinic Nitrogen Sites Promoting Levulinic Acid Hydrogenations over Double‐Shelled Hollow Ru/C Nanoreactors

Abstract
Nitrogen-doped nanocarbons are widely used as supports for metal-heterogeneous catalytic conversions. When nitrogen-doped nanocarbon supports are used to disperse metallic nanoparticles (MNPs), the nitrogen dopant can enhance MNPs electron density to reach higher catalytic activity and promote MNPs stability through anchoring effects. However, the precise identification of active nitrogen species between N-dopants and reactants is rarely reported. Herein, a proof-of-concept study on the active N species for levulinic acid hydrogenation is reported. A double-shell structured carbon catalyst (DSC) is designed with selectively locating ultrafine Ru NPs only on inner carbon shell, specifically, different N species on the external carbon shell. Through the design of such a nanostructure, it is demonstrated that the alkaline pyridinic N species on the outer shell serves as an anchor point for the spontaneous binding of the acidic reactant. The pyridinic N content can be modulated from 7.4 to 29.2 mg gcat−1 by selecting different precursors. Finally, the Ru-DSC-CTS (using chitosan as the precursor) catalyst achieves a 99% conversion of levulinic acid under 70 °C and 4 MPa hydrogen pressure for 1 h. This work sheds light on the design of nanoreactors at the atomic scale and investigates heterogeneous catalysis at the molecular level.
Funding Information
  • National Natural Science Foundation of China (21908197, 21905271)
  • Dalian National Laboratory for Clean Energy
  • National Natural Science Foundation of China (21902157)