Abstract
This study analyses the robustness and convergence characteristics of a neural network. First, a special class of recurrent neural network (RNN), termed a continuous-time Zhang neural network (CTZNN) model, is presented and investigated for dynamic matrix pseudoinversion. Theoretical analysis of the CTZNN model demonstrates that it has good robustness against various types of noise. In addition, considering the requirements of digital implementation and online computation, the optimal sampling gap for a discrete-time Zhang neural network (DTZNN) model under noisy environments is proposed. Finally, experimental results are presented, which further substantiate the theoretical analyses and demonstrate the effectiveness of the proposed ZNN models for computing a dynamic matrix pseudoinverse under noisy environments.