Development of mobile intraoperative computed tomography imaging system and assessment of its performance in a brain and body phantom study

Abstract
BACKGROUND: Intraoperative computed tomography (iCT) system has been developed focusing on combining the advanced imaging techniques for the best imaging modality. However, the use of iCT system in the operating rooms is limited due to the lack of flexible mobility. OBJECTIVE: This study aims to develop a mobile iCT imaging system and assess its imaging performance in a phantom study. METHODS: The mobile iCT system with mecanum omni-directional wheels has three major components namely, a rotating gantry, a slip-ring and a stationary gantry. Performance of mecanum iCT system was evaluated using the indices of signal-to-noise (SNR), contrast-to noise (CNR), and spatial resolution (MTF). Anatomical landmarks on phantom images were assessed using a 5-point scale (5 = definitely seen; 4 = probably seen; 3 = equivocal; 2 = probably not seen; and 1 = definitely not seen). RESULTS: The mecanum iCT system can be conveniently used for a whole-body scan under intraoperative conditions even in narrow operating rooms due to a smaller turning radius. The image quality of the mecanum iCT system was found to be acceptable for clinical applications (with SNR = 162.72, CNR = 134.29 and MTF = 694 mu m). The diagnostic scores on the phantom images were 'definitely seen' value. CONCLUSIONS: The proposed mecanum iCT system achieved the improved flexible mobility and has potential to better serve as a useful imaging tool in the clinical intraoperative setting.