Giant magnetization jumps in multiscale-distortion dual-antiferromagnetic system

Abstract
Large magnetization jumps (MJs) can realize an avalanched flip of the spin structure from a low spin state (antiferromagnetic) to a high spin state (ferromagnetic) and has potential applications in spin devices. Here, we report giant MJs in dual-antiferromagnetic hematite-ilmenite (Fe2O3)0.1(FeTiO3)0.9 (HI-9) solid solution. The obtained intensity of MJs (the ratio of an abrupt change in magnetization to saturation magnetization) increases to 53.3%, which is about twice as much as previously reported values in HI-9. These unusually large MJs are achieved by intentionally introducing multiscale distortions with high-stress compression deformation. Both experiments and Monte Carlo simulations demonstrate that the increase in MJs' intensity originates from the tunable atomic-scale and nano-scale distortions induced by crystal strain energy during the deformation process. Our findings provide an approach to modulate metamagnetic transitions and may inspire fresh ideas for creating high-performance antiferromagnetic materials.
Funding Information
  • National Natural Science Foundation of China (52101233)
  • National Natural Science Foundation of China (51931007)
  • National Natural Science Foundation of China (52071279)
  • National Natural Science Foundation of China (51971087)