Parallel Distributed Framework for State Space Adaptive Filter for Removal of PLI from Cardiac Signals

Abstract
Cardiac signals are often corrupted by artefacts like power line interference (PLI) which may mislead the cardiologists to correctly diagnose the critical cardiac diseases. The cardiac signals like high resolution electrocardiogram (HRECG), ultra-high frequency ECG (UHF-ECG) and intracardiac electrograms are the specialized techniques in which higher frequency component of interest up to 1 KHz are observed. Therefore, a state space recursive least square (SSRLS) adaptive algorithm is applied for the removal of PLI and its harmonics. The SSRLS algorithm is an effective approach which extracts the desired cardiac signals from the observed signal without any need of reference signal. However, SSRLS is inherited computational heavy algorithm; therefore, filtration of increased number of PLI harmonics bestow an adverse impact on the execution time of the algorithm. In this paper, a parallel distributed SSRLS (PD-SSRLS) algorithm is introduced which runs the computationally expensive SSRLS adaptive algorithm parallely. The proposed architecture efficiently removes the PLI along with its harmonics even the time alignment among the contributing nodes is not the same. Furthermore, the proposed PD-SSRLS scheme provides less computational cost as compared to sequentially operated SSRLS algorithm. A comparison has been drawn between the proposed PD-SSRLS algorithm and sequentially operated SSRLS algorithm in term of qualitative and quantitative performances. The simulation results show that the proposed PD-SSRLS architecture provides almost same qualitative and quantitative performances than that of sequentially operated SSRLS algorithm with less computational cost.