Abstract
Variation in drying material and their biological differences, coupled with heat supply method in different dryers, makes mathematical modeling of drying complicated. Attempt was made to simulate a drying process and to identify best suitable model out of six selected drying models, for drying of ginger slices in a solar-biomass integrated drying system designed and developed for spice drying. Moisture content data were converted into the moisture ratio (MR) expressions and curve fitting with drying time for the selected drying models was analyzed. Sigma Plot software was used for nonlinear regression to the data obtained during drying and for modeling of drying curves. The suitability of the models was evaluated in terms of statistical parameters such as coefficient of determination (R2), mean percentage error (P), and standard error estimate. Drying air temperature was in the range of 47–55°C and air velocity was between 1.0 and 1.3 m s−1. Ginger slices were dried from 88.13% to 7.65 ± 0.65% (wb) in 16 h. Trays were interchanged in a predetermined matrix sequence from 4 h onwards when moisture content was reduced to 60–70% (wb), for uniformity in drying. Highest value of R2 (0.997), lowest value of SEE (0.020), and P value < 0.0001 established Page model as the best suitable model for the developed drying system. The predicted MRs were in good agreement with the experimental values and the effective moisture diffusivity for ginger was found to be 2.97 × 10–7 m2 s−1.
Funding Information
  • Indian Council of Agricultural Research (AICRP on PHT 4 - 8/84 - AE, dated 24/11/1986)