New Search

Export article
Open Access

Mineração de Dados para Análise e Predição das Infrações de Trânsito na Cidade do Recife

Arianne Sarmento Torcate, , Flávio Secco Fonseca, Marcos André Santos Galindo

Abstract: O aumento significativo de infrações de trânsito tem se tornado algo casual na vida dos brasileiros. A cidade do Recife, estado de Pernambuco, segundo a empresa Holandesa TomTom Traffic, no ano de 2018, ocupava a 10º posição entre as cidades com o pior tráfego de automóveis no mundo. Em 2019 passou a ocupar a 15º posição. Diante disto, esta pesquisa tem como intuito investigar fatores relacionados ao aumento da quantidade de equipamentos de aferição automática e de agentes de trânsito. O objetivo é criar um modelo de predição de delitos no trânsito por turnos, testado com a base real referente ao ano de 2019. Já os dados selecionados para visualização e treinamento das técnicas de Machine Learning foram referentes aos anos de 2017 e 2018, extraídos do portal de dados abertos. Para guiar o processo de mineração e análise de dados, a metodologia CRISP-DM foi aplicada. Além disso, ferramentas como Pentaho PDI, Weka, GretL, Python e Orange Data Mining também foram utilizadas para auxiliar neste processo. Os resultados obtidos apontam que há um aumento significativo de infrações em feriados, principalmente no Corpus Christi. Além disso, as predições mensais apresentam bons resultados quando comparados aos números reais de infrações.
Keywords: análise / Predição / mineraão / dados / aos / aumento significativo / significativo de infrações

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Revista de Engenharia e Pesquisa Aplicada" .
Back to Top Top