New Search

Export article
Open Access

Analisis Clustering K-Medoids Berdasarkan Indikator Kemiskinan di Jawa Timur Tahun 2020

Febiyanti Alfiah, Almadayani Almadayani, Danial Al Farizi, Edy Widodo
Published: 5 December 2021

Abstract: Keberadaan pandemi COVID-19 di Indonesia, mengakibatkan kemiskinan di Indonesia semakin tinggi terutama di Jawa Timur yang menjadi satu diantara provinsi lain dengan kasus COVID-19 tinggi di Indonesia. Tujuan penelitian ini yaitu mengetahui pengelompokan kabupaten/kota di Jawa Timur yang mempunyai kesamaan karakteristik berdasarkan indikator kemiskinan tahun 2020. Penelitian ini menggunakan data yang didapatkan dari Badan Pusat Statistik. Metode yang digunakan ialah metode k-medoids clustering yang merupakan metode partisi clustering guna pengelompokan n objek ke dalam k cluster. Berdasarkan hasil penelitian, diperoleh pengelompokan karakteristik masing-masing cluster yang dibentuk berdasarkan nilai indikator kemiskinan di Jawa Timur tahun 2020 sebanyak 2 cluster. Dimana 30 kabupaten/kota pada cluster 1 dan dan 8 kabupaten/kota pada cluster 2. Cluster 1 memiliki karakteristik Persentase Rumah Tangga yang Mempunyai Sanitasi Layak, Angka Harapan Hidup, dan Persentase Angka Melek Huruf Umur 15-55 Th tinggi. Sedangkan cluster 2 memiliki karakteristik Persentase Rumah Tangga Miskin Penerima Raskin, Persentase Penduduk Miskin, dan Persentase Pengeluaran Perkapita untuk Makanan dengan Status Miskin tinggi. Kata kunci: Clustering; Jawa Timur; K-medoids; kemiskinan K-Medoids Clustering Analysis Based on Poverty Indicators in East Java in 2020 ABSTRACT The existence of the pandemic COVID-19 in Indonesia has resulted in higher poverty in Indonesia, especially in East Java, which is one of the other provinces with high cases in Indonesia. The purpose of this study is to find out the grouping of regencies/cities in East Java that have similar characteristics based on the poverty indicators in 2020. This study uses data obtained from the Badan Pusat Statistik. The method used is k-medoids clustering method which is a clustering partition method for grouping n objects into k clusters. Based on the results of the study, it was found that the grouping of the characteristics of each cluster formed based on the value of the poverty indicator in East Java in 2020 was 2 clusters. Where 30 regencies/cities in cluster 1 and and 8 regencies/cities in cluster 2. Cluster 1 has the characteristics of the percentage of households that have proper sanitation, life expectancy, and a high percentage of literacy rates aged 15-55 years. While cluster 2 has the characteristics of the percentage of poor households receiving Raskin, the percentage of poor people, and the percentage of per capita expenditure on food with high poor status. Keywords: Clustering; East Java; K-Medoids; poverty
Keywords: k clusters / k medoids clustering / poverty indicators / Persentase / Raskin / Badan Pusat Statistik

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "JURNAL ILMIAH SAINS" .
Back to Top Top