New Search

Export article

Other versions available

A robust variable screening procedure for ultra-high dimensional data

Statistical Methods in Medical Research ; doi:10.1177/09622802211017299

Abstract: Variable selection in ultra-high dimensional regression problems has become an important issue. In such situations, penalized regression models may face computational problems and some pre-screening of the variables may be necessary. A number of procedures for such pre-screening has been developed; among them the Sure Independence Screening (SIS) enjoys some popularity. However, SIS is vulnerable to outliers in the data, and in particular in small samples this may lead to faulty inference. In this paper, we develop a new robust screening procedure. We build on the density power divergence (DPD) estimation approach and introduce DPD-SIS and its extension iterative DPD-SIS. We illustrate the behavior of the methods through extensive simulation studies and show that they are superior to both the original SIS and other robust methods when there are outliers in the data. Finally, we illustrate its use in a study on regulation of lipid metabolism.
Keywords: Variable selection / NP dimensionality / independence screening / minimum density power divergence estimator / influence function / gene selection
Other Versions

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Statistical Methods in Medical Research" .
References (38)
    Back to Top Top