Tumor-suppressing effect of bartogenic acid in ovarian (SKOV-3) xenograft mouse model

Abstract
Bartogenic acid (BA), a natural pentacyclic triterpenoid, proved to have chemomodulatory, anticancer, antidiabetic, anti-arthritic, and anti-inflammatory activity. Based on structure–activity relationship (SAR) approaches, BA has close structural resemblance to oleanolic acid and ursolic acid. These two pentacyclic triterpenoids are well accepted with respect to their therapeutic value in various ailments including anti-cancer activity. The aim of this study is to evaluate the efficacy of BA as a possible antitumor agent, along with its safety in SKOV-3 ovarian cancer. In vitro cytotoxicity of BA and paclitaxel on human ovarian cancer cells (SKOV-3) was assessed using MTT assay. Antitumor potential of BA alone, standard anticancer drug (paclitaxel) alone, and BA in combination with paclitaxel were evaluated in SKOV-3 xenografted SCID mice. Immunohistochemical analysis of NF-κB was performed and analyzed in SKOV-3 tumors. BA alone and BA in combination with paclitaxel significantly inhibited the tumor growth. IC50 of BA was found to be 15.72 μM. Similarly, paclitaxel showed significant antitumor effect with IC50 of 3.234 μM. Treatments of paclitaxel, BA, and combination of BA with paclitaxel were well tolerated during treatment period. Immunohistochemical analysis of NF-κB in SKOV-3 tumors treated with BA in combination with paclitaxel revealed antitumor effect in terms of inhibition of NF-κB. Our results suggested that BA exhibits promising antitumor effect in the restriction of SKOV-3 cells and tumors with considerable safety.