New Search

Export article

Facial Expression Recognition Using 3D Points Aware Deep Neural Network

Imen Hamrouni Trimech, Ahmed Maalej,
Traitement du Signal , Volume 38, pp 321-330; doi:10.18280/ts.380209

Abstract: Point cloud-based Deep Neural Networks (DNNs) have gained increasing attention as an insightful solution in the study field of geometric deep learning. Point set aware DNNs have proven capable of dealing with the unstructured data type and successful in 3D data applications such as 3D object classification, segmentation and recognition. On the other hand, two major challenges remain understudied when it comes to the use of point cloud-based DNNs for 3D facial expression (FE) recognition. The first challenge is the lack of large labelled 3D facial data. The second is how to obtain a point-based discriminative representation of 3D faces. To address the first issue, we suggest to enlarge the used dataset by generating synthetic 3D FEs. For the second one, we propose to apply a level-curve based sampling strategy in order to exploit crucial geometric information. The conducted experiments show promising results reaching 97.23% on the enlarged BU-3DFE dataset.
Keywords: Neural / geometric / aware / recognition / Point / Deep / enlarge / cloud / DNNs

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Traitement du Signal" .
Back to Top Top