New Search

Export article
Open Access

Preparation and Characterization of Al-Cu-Al2O3/Gr Nano Compound by Metallic Powder Method and Study of the Effect of the Rolling Process on Physical Properties as Suitable Materials for Heat Sink

Er. Fathei. Nouh, , Hossam M. Yehia, Omayma El-Kady

Abstract: Al-Cu-Al2O3 / Gr Nano compound was successfully prepared by metallic powder method, 6 samples were prepared with different weight ratios of graphene, 10% copper and 2.5% Al2O3 and proportions of 0.5, 1, and 1.5 graphene were prepared, the samples were run in a mill from Ceramic in a ratio of 1:5 powder into balls for 35 hours, which helped to break the aluminum and copper particles and reduce their size, which helps in the process of homogeneous mixing of the compound. The samples were compressed at 60 bar pressure and sintered in a vacuum at 550 and 565 degrees Celsius for 60 minutes. Sintering at 550°C proved to be more suitable for the mixture. Two identical sets of samples were prepared. Both SEM were used to investigate the microstructure and components of the sintered nanocomposites. Relative density, hardness, electrical conductivity and thermal conductivity study. The rolling process of the samples was carried out with a percentage of 35% of the sample size successfully at a temperature of 480 degrees Celsius, and this led to an improvement in the density of the samples and hardness and an increase in the diffusion of the reinforces, which led to an improvement in electrical conductivity by 16: 25% and a better improvement in thermal conductivity. Improved up to 1.5% graphene by weight after rolling and 1% graphene before rolling.
Keywords: graphene / rolling / copper / Al2O3 / hardness / sintered / nanocomposites

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "International Journal of Engineering and Advanced Technology" .
References (9)
    Back to Top Top