Multiscale modelling of charge transport in P3HT:DIPBI bulk heterojunction organic solar cells

Abstract
Charge transport properties of a P3HT:DIPBI bulk heterojunction solar cell are modelled by kinetic Monte Carlo simulations based on a morphology obtained from coarse-grained molecular dynamics. Different methods for calculating the hopping integrals entering the charge transfer rates are compared and calibrated for hole transport in amorphous P3HT. The influence of intermolecular and intramolecular charge transfer on the total charge carrier mobility and hence the power conversion efficiency is investigated in detail. An analysis of the most probable pathways with low resistance for hole transport is performed, establishing a connection between charge mobility and morphology.
Funding Information
  • Deutsche Forschungsgemeinschaft (DO 768/4-1)