New Search

Export article

Hot-Air Anti-Icing Heat Transfer and Surface Temperature Modeling

, Yaping Hu, Honghu Ji, Min Zhang

Abstract: An inlet strut with a hot-air anti-icing system is studied experimentally and numerically to understand the heat transfer between impinged supercooled water droplets and solid surfaces. Experiments were performed in an icing research wind tunnel for dry (without water droplets) and sprayed cases. The results show that the impinged droplets can decrease the surface temperature, even on areas without droplet impingement or a water film. Theoretically, the impinged droplets exchange heat with solid surfaces through two heat flow rate terms: Q˙imp, which contains the kinematic and internal energies of the impinged droplets; and the evaporation energy Q˙evap. Adding these two terms to the solid surface when simulating the dry case provides a method to predict the surface temperature after spraying. Calculations for Q˙evap depend on the film coverage that varies due to different operating conditions. However, calculating Q˙evap for the impinged area or over the entire surface can give the upper and lower bounds of the prediction for surface temperature. The results show that both methods can give predictions with errors that are below 5% for all cases studied. The numerical results also show that both Q˙imp and Q˙evap decrease the surface temperature, whereas the effect of Q˙imp is neglectable when compared with Q˙evap.
Keywords: impinged droplets / decrease the surface temperature / icing / Hot / give / evap

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "AIAA Journal" .
References (31)
    Cited by 1 articles
      Back to Top Top