New Search

Export article

A Framework for Multi-Threshold Image Segmentation of Low Contrast Medical Images

, Ismail Elansary
Traitement du Signal , Volume 38, pp 309-314; doi:10.18280/ts.380207

Abstract: Accurate medical images segmentation plays a vital role in contouring during diagnosis and treatment planning. To improve the segmentation accuracy in low contrast images, we propose a method by combining Hill entropy and fuzzy c-partition. Here, using membership function, an image is first transformed into fuzzy domain. Subsequently, the fuzzy Hill entropies are defined for foreground (object) and background. Next, the total fuzzy Hill entropy is maximized to compute the accurate threshold; this process is employed to calculate a proper parameter combination of membership function. This Hill entropy is then optimized to acquire an image threshold by Differential Evolution “DE” optimization algorithm. The key benefit of the presented approach is that it considers the information of background and object as well as interactions between them in threshold selection mechanism. The results and performance evaluations show the better accuracy of our technique over other existing approaches.
Keywords: optimization / function / Evolution / fuzzy / image threshold / segmentation / Differential / treatment / Hill

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "Traitement du Signal" .
Back to Top Top