New Search

Export article
Open Access

NGSremix: A software tool for estimating pairwise relatedness between admixed individuals from next-generation sequencing data

Anne Krogh Nøhr, Kristian Hanghøj, Genis Garcia Erill, Zilong Li, ,
G3 Genes|Genomes|Genetics ; doi:10.1093/g3journal/jkab174

Abstract: Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C ++ in a multi-threaded software and is freely available on Github
Keywords: Relatedness / Genotype likelihoods / Maximum likelihood estimation / Admixture / Low-depth NGS data

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

Share this article

Click here to see the statistics on "G3 Genes|Genomes|Genetics" .
Back to Top Top